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OPTIMAL PATHS OF CAPITAL ACCUMULATION UNDER TIE

MINIMUM TINE OBJECTIVE*

by

Mordecai Kurz

dIntroduction
The important question of investment criteria and optimal strategy

of development has been discussed by various authors from many different

points of view. In principle, a distinction can be made between

"competitive" growth paths and "non-competitive" paths. In "competitive"

paths we mean the growth path which is determined by a model in which

decentralized structure of production and consumption is postulated;

producers' expectation functions and profit maximization leading to

demand function for capital is explicitly introduced; and consumers,

preferences leading to a savingsfunction completes the model.

[Once we depart from the deterministic competitive model, it becomes

very unclear how much the economist can say about social development

fgoals. If we allow the preference function of some planning board to
determine the optimal development strategy, we are, in fact, intro-

ducing political and military considerations, national pride, past

4i experience of the nation and other sociological factors that mold the

objectives of the nation.

It is quite clear that the setting of objective functions for long-

1range economic development will always be a disputable question and the

This work was supported in part by Office of Naval Research Contract
Nonr-225(50) at Stanford University. Reproduction in whole or in part
is permitted for any purpose of the United States Government. The author
is indebted to Professor K. J. Arrow for his valuable comments.



only hope a writer has is to be able to give reasonable justification

for any choice of an objective function.

The present work is, in a certain sense (to be explained in the

last section), a continuation of Srinivasan's work [12] within the

context of a two sector type economy discussed by Drandakis [3],

Kurz [4], Meade [5], Srinivasan [13], Uzawa [15] and others. The model

represents a closed economy in which foreign trade, government fiscal

policy and technological change are excluded. The inclusion of foreign

trade and technological changes are natural extensions of this work,

while government policy is implicitly assumed in the statement of the

objectives of the economy.

In Section (A) we discuss the general nature of our objective

function. In Section (B) the model is presented and the problem is

explicitly stated. Section (C) contains the main body of analysis

while Section (D) is devoted to a comment.

(A) Social Goals

The recent discussions regarding social goals have pointed out two

main differences between preferences of individuals and society as a

whole. These are: (1) Society, contrary to the individual, has an

infinite horizon. (2) Society should not discriminate among gener-

ations; hence, it should not have a discount factor. These require-

ments have caused substantial logical difficulties indicated in [1],

[141, and others.

In trying to accommodate requirements (1) and (2) above, let us

consider the following point of view. It stands to reason that society

should seek the highest technologically feasible level of consumption
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per capita for its citizens. The need not to discriminate among

generations imposes a restriction upon such a goal. This restricbion

is that the maximum level to be obtained should be a sustainable level.

1A sustainable rate of consumption per capita is a rate that the economy

can attain and maintain forever with the appropriate investment policy.

Social goals may, therefore, be defined in terms of such sustainable

rates of consumption per capita. From the point of view of consumption

theory, our suggested point of view is some kind of "permanent income

hypothesis" for society as a whole. The nature of the maximum sus-

tainable rate, called the maximum terminal path level, was discussed

recently in [2], [6], [7], [8], [9], [ilLo

In a certain sense, the attainment of such maximal terminal path

level for consumption per capita may be regarded as reaching "economic

maturity" for an underdeveloped economy. Hence, if we impose upon our

underdeveloped economy the goal of reaching this maximal terminal path,

there arise two natural questions: (1) Since attainment of this von

Neumann path takes time, how does society feel about the transition

period and the level of consumption during this period? (2) Once a

society is on the path, a certain intrageneration agreement should

exist to maintain the optimal investment policy forever.1-/

Question (1) above is the serious one and we shall devote some

thoughts to it below. If one reads, however, the vast economic-

political literature concerning the problems of development, one can

notice that everywhere politicians and economists state their goal as

temporary restriction of consumption (politically feasible) so as "to

reach economic maturity as soon as possible." The theoretical
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implications of such social goals can be stated as follows: Given

certain institutional restrictions on consumption, try to reach the

maximum terminal path in minimum time. In "reaching" the path we mean

that the composition of the capital stocks and labor should be such

that when we reach the path we stay on it indefinitely. Obviously

many arguments can be raised against such social goal function. It

assigns no benefits to periods in which consumption per capita is tem-

Porarily above the maximum terminal path level; or netiv e benefits

to periods in which we are below this path. However, it seems inter-

esting enough to investigate the implications of such an objective and

study the structure of the optimal strategy. On the basis of the

results obtained from the pure minimum time problem, we shall be able

to evaluate some general principles of development strategy and suggest

natural extension of our approach.

(B) The Model

In the analysis that follows, we shall work with a two-sector

economy. The first sector uses capital and labor, and produces capital

goods; the second sector produces consumer goods and uses capital and

labor. More specifically, let

K be capital goods employed in the capital goods sector

L be labor employed in the capital goods sector

K2 be capital employed in the consumer goods sector

L2 be labor employed in the consumer goods sector

Then the production functions are

(1) Q F =Fi(KiLi) , i = 1,2 P
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and we shall assume

(la) F. are homogeneous of first degree and concave; hence,

F.(KL. = L f.(Li) ,f >0 f.' < 0 i = 1,2
;i(Ki, fi( ) 0 Tii f .> , • ,

(ib) f.(o) o f!() =0

(2) As for capital goods, we shall assume that capital goods are not

"shiftable" after they have been placed in either sector. In

other words, new capital goods can be invested in either sector

but after being installed they cannot be moved from one sector to

jI  the other. We retain the assumption that capital-labor substitution

prevails within each sector, but only labor can move freely from

one sector to the other. Our basic differential equation system

is formulated as follows:

Let L be total labor supply,

K(2a) k 1 L- 1

K2
(2b) k2 L 2

and we shall assume

nt(3) L = e so that the labor force grows at a constant rate. Capital

goods depreciate at a constant proportional rate t.

Since

K + K is total gross investment in the capital goods sector,
1 1
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and

K2 + tK2  is total gross investment in the consumer goods sector,

then

(3a) F1 = (K + .iK1) + (K2 + LK2)

Let
K1

(3b) 1 + uF
I1

and

LI(3c) I - =

Then, from the definition of k and k2, we have

K L

Then, using (3a) and the notation of (3b) and (3c), we obtain

(4a) kI = uv fl1(7) - (ji + n)k 1(4) kl
(4b) k2 = (l - u)v f1( - (1 + n)k 2

The system (4) is the fundamental system of differential equations. If

we start with some initial kl1(0 ) and k 2(0), and then choose arbi-

trary u(t), v(t), the system (4) can be solved for the implied paths

of kl1(t) and k 2(t). Note that u(t), being the proportion of new

investments placed in the capital goods sector is a variable that can

vary between 0 and I and, hence, if u = 0, all new capital goods are

invested in the consumer goods sector, while if u = 1, all new capital

1
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goods are invested in the capital goods sector. Similarly, if v = 0,

then all labor is employed in the consumer goods sector, and if v = 1,

all labor is employed in the capital goods sector. We may also note

that v = 0 and the concavity of f1  imply that lim vf (-) > 0.

If vf k 0, then, by convention, we set u = 0. Hence, we

shall assume u kl ) >

(5) v: { vfl( ) v=O

u = 0 if =f 1 0o

1. Having the free choice of the composition of new investments (u)

and the composition of the labor force (v), our economic problem

starts. An objective function is given to us. Let us denote our

objective function W, which is W = W(tklk 2 'u,v), and our problem

is to maximize

(6) D = w(t, k1 , k2, u, v)dt

subject to the system (4) and 0 < u < 1, 0 < v K 1. In other words,

- we want to choose u*(t) and v*(t) such that if we solve (4) and

insert in (6), the resulting D* is maximized.

As we suggested in Section (A) above, our objective will be to

minimize the time to economic maturity. In this case, W =1 and

D = T; hence, we want to minimize T, the time needed to reach the

maximum sustainable level of terminal path consumption per capita.

(B.1) The Characterization of the Maximum Terminal Path

We shall present now the precise definition of the maximal
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terminal path level. This subject has been discussed in the literature;
LI

hence, we shall state without proof the following: Let v - Then

the maximum terminal path value of consumption per capita is determined

by k, k2 T and vT . These are defined by the following conditions:

T
k 

T

T 2 f2
(6a) v T f2

(6b) (n + ) fi

fl k T f2 k

(6c) k k2
f T f' T
1 .v 2 1-v

where fl fl f f 2 ? T1  and so are the derivatives f' and
1 \T/ f2 = 2\ 1T

f'. By virtue of (l.a) and (l.b), it is true that 0 < vT < 1 and

T T T T
k > 0, k > 0. In the plane (kl, k2) , the point (kl~k2) has1 'k2 l'2 T

certain properties that are important. These will be proved now.

T T
Theorem 1: Let (kl,k2 ) be the maximal terminal path values of kI

and k2, then
f(k )

( ) <n+

T f(k )

(2) k2 < 1 1
n+[.

Proof: Insert (6 .a), (6.b) into (6.c) to obtain
T

n1 v T T T
n+. 1 2

8



T T
Since > 0, k2 > 0 we clearly haveTi 

kk 
T

2

kl n+ LTT

but since 0 < vT < 1 and by concavity of fl, it follows that

fl(k{) > v fl (), hence,
TT

T f ( kT)
ik' < -1

n+1

T
T < f1 k1
2 n+

In diagrammatic form, we have:

- fl(ki)

n / 2- n+ t

f

A f1 (ki) k
k1 fn +lp

Diagram 1
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In most of this paper we shall work in the (klk 2 ) plane rather

than in the two separate (kl,t), (k2 ,t) planes.

Now, given kl(0), k((0), and the targets k k our minimum

time problem is: choose u*(t) and v*(t) in such a way that the

implied solutions k*(t), k*(t) (implied by the differential equation

(4) above) will have the following properties: (1) k*(O) = k (0),

TT
k*() =k2(0); (2) k*(T) k k*(T) = k; (3) T will be the minimum
2 2 1 1' 2 2

among all feasible T's that satisfy (1) and (2).

This form of our problem allows us to utilize the powerful

Pontryagin Maximum Principle [10], which will be the basic mathematical

tool in what follows.

(C) The Solution of the Minimum Time Problem

As the problem was formulated, the Pontryagin Principle can be

applied for the minimum time problem. The conditions of the theorem

can be stated as follows:

Let

(7) H =l(u(t)v(t) fl(-k ) - (n+ji)k ) + *2((l-u(t))v(t) fl( )-(n+ L)k2)1 11v

Then, if u*(t) and v*(t) are the optimal policies, there exist

continuous functions v1(t) and 42 (t), not both identical to 0,

such that
d~t(t) k k

(8a) 1 = -u*(t) fv(*) - (n+p.)] l k(t) - [(l-u*)fj( i W2 (t)

(8b) d.=2(t)

and

10



(I) for all t, 0 < t < T, the function H( 1,42,kl, k2 ,u,v)

as a function of u and v attains its maximum at v*

and u*.

(II) Sup H(* ,'-2 ,kl, k2,uv) 0 for all 0 < t < T.
uv

(Sup H(lr,*,2,k1 , k2,u,v) is a constant.)) /

uv

Our investigation has to start with the time functions W(t)

and 2(t). Solving the differential equations (8a,8b) we see that

there are two possible solutions for arbitrary v(t) and u(t):

t [ '

*1(t) =Be o l vI

(a)

*2 (t) o
-fg(r)d-c ot og(z)dzen+) k1  ]

1r(t) = e f e [( ku)f(-dr + C

(b) 1e

* 2 (t) = Ae

where A, B; C are constants, g(T) - u(r)fj(k)- (n'L) and kl( )

is the corresponding solution to (4a,4b).

The Pontryagin theorem gives us essentially a set of consistency

conditions. To prove that in fact some u*, v* are optimal, we have

to find l(t) and *2 (t) continuous such that the consistency con-

ditions are met. It is obvious from the start that the initial con-

ditions are crucial. For different initial conditions, we can expect

different optimal policies. The initial conditions will determine

both the signs and the sizes of A, B, and C, and also the corres-

ponding optimal policies, v* and u*.

11



Note, however, that whenever solution type (b) holds with 1 0,

*2 O, *1A *2, then the optimal policy will take the form v* 0

or v* = , u* = 0, or u* = 1. Only when *1 = 0 or *2 = 0 (not

both) is it possible to have different solutions than these two.
3/

The complexity of the problem arises from the fact that 41 and

*2 as solutions of (8a.) and (8b) depend upon v* and u*, while in

evaluating H(t) and the optimal policy, they determine u* and v*.

The economic meaning of this search for a consistent set of con-

ditions is the old search for a set of (shadow) prices, such that

behavior under them follows some optimal properties.

In presenting our solutions we shall present in the following

section a diagram and description of the optimal policy. In Section

C.2, a rigorous proof will be given.

(C.l) Description of the Optimal Strategy

In the plane (klk 2 ) there are three distinct regions denoted

retion I, II, and III. These three regions are determined by three

curves which are, in turn, defined in terms of the three "extreme

policies." Let us define these first.

(a) The u* = l, v* = 1 policy is the policy according to

which all labor is employed in the capital goods sector (v* = 1),

and all new capital goods are reinvested in the capital goods sector.

(b) The u* = 0, v* = 1 policy is the policy according to

which all labor is employed in the capital goods sector (v* = 1)

but all new capital goods are invested in the consumer goods sector

(u*= o)

12



(c) The u* = 0, v* = 0 policy is the policy according to

Jwhich all labor is employed in the consumer goods sector and no new

capital goods are built.

The three curves that define regions I, II, and III are the

following (see Diagram 2):

(a) The curve DG has the property that it is the collection of

all (k1 (O),k 2 (0)) such that if the v* = 1, u* = 1 policy is
T T

followed, the path will pass through the point (klk2). As for all

v* = 1, u* = 1 policies, the corrdinates tend as follows: k2() = 0
f/

w A fl( l

and k '1 k1 where k1 = n+

(b) The curve EF is the collection of all (k1 (0),k 2 (O)) such

that if the v* = 1, u* = 0 policy is followed, (k (),k 2(t)) will
T T

pass through (kl,k ) but ultimately will turn around, and

k k2(-) = 0.

(c) The curve EH is the collection of all (k1 (O),k 2 (0)) such

T 

s

-that kT2 (0) T )k1 (0), (k 1 (o) > T and hence if the u* = 0 =v*policya is(O = l() (k(t) ,k k1

policy is followed, (k(t),k2(W) is bound to pass through (k, 2

Region I is defined by all points (k1 (O),k 2 (O)) to the left of

the combined curve DEF.

Region II is defined by all points (k ( O),k2(0)) to the right

of DE but above EH.

Region III is defined by all points to the right of EF but

below EH.

13



k2

(nf)

(k (0i

2 n+ I

(k l(O),,zi2 (O) ) (kl1(0),k2(0) )

T T(kl'k 2)(I)

Vk () A f 1(k 1)k1

Diagram 2

Optimal Policy for Points in Region I.

It is proved in C.2 below that the optimal policy for (k 1(0),k 2(a))

in region I is as follows: follow the u* =1 =v* policy for some

time period (O,t**) so that k 2  is falling and k 1  is rising until

you reach the curve EF. At that moment the policy is changed to

O*= v* 1 and k, is falling while k 2 is rising until you
1 2

reach (k4,k ).

// 14



3

This strategy of development requires for the initial stage, to

jbuild only capital goods and to reinvest -them in -the machine building
industries. Later on as a critical moment is reached, no more capital

goods are being invested in the machine building sector and all new

capital goods are invested in consumer goods industries. Note that at

the "switching" point the capital goods industries have more capital

T
than needed for the optimum terminal path value of k1, but during

the next period of transition a certain portion of it is being

depreciated.

It is interesting to note that region I does not contain "poor"

countries in the conventional sense only. It contains also economies

which start off with basically unbalanced capital stock: If an economy

has too much (relative to the optimal terminal path) capital in the

consumer goods industries and too little capital in the capital goods

industries, it still follows the basic policy of first "tipping the

balance" in favor of the capital goods sectors and only then approaching

the goal of the maximum terminal path level.

In our analysis so far we have not imposed a "floor" on consumption

per capita. Consequently, the total "food" production during the

transitional period is equal to lim (l-v)f2 7: 2 This obviously
v --)1 2 1_vl

is unrealistic strategy. The analysis does, however, suggest the basic

policy. In imposing floors, we obtain the following results: (a) If

we require a certain proportion of the labor force to be employed

during the period of transition in the consumer goods sector, then our

F above analysis remains completely unchanged except that the minimum

time is increased. (b) If we require minimum consumption per capita

15



during the period of transition, then our analysis remains unchanged

except for a special region of the (klk 2 ) diagram which constitutes

a trap from which the economy cannot get out and, in fact, except for

a special set of conditions the economy will decay completely.

Optimal Policy in Region II

If the economy starts off in region II, it is capable of going
T T

directly from (k(0),k2 (0)) to (k1Tk 2 ). During the transitional

period u* = 1 so that all new capital goods are invested in the

capital goods sector and, hence, the capital goods in the consumer goods

sector simply depreciate. It is interesting, however, to note that

k (t) does not have to rise; in fact, it will decline in most cases

since the total output of new capital goods does not have to be large
so that k (t) may grow at a rate smaller than n, the rate of growth

of population. It is shown below that there is a unique constant v*
T T

such that the economy will move from (k (0),k (0)) to (klT k2)
1 '2 1 2

Along the lines HE and DE the extreme policies will be followed.

Along EH: v* = 0 and along DE: v* = 1.

0Otimal Policy in Region III.

In this region the opposite of II occurs. Here u* = 0, capital

in the capital goods sector is allowed to depreciate while the capital

stock in the consumer goods sector absorbs all of the newly built

capital goods. The amount of new capital goods to be built is deter-

mined by v* which is a unique constant depending upon the initial

conditions. Along EH: v* = 0 and along FE: v* = 1. Note here

again that k2 may rise or fall during the transitional period

16



depending upon whether the rate at which new capital goods are added

exceeds or falls short of -the rate of growth of population and the rate

of depreciation in the consumer goods sector.

(C.2) Rigorous Study of the Optimal Policies

In order to prove the optimality of the policies described in

C.1, we have to study first the three "extreme" policies u* = v* =!

u* =o v* , u* = o, v*= o.

2C.2.1 The u* = 0 v* = 1 Policy.

Under this policy

k -(n+)k1

(10)

k2 f 1l(k ) - (n+p)k2

hence,

lim k (t) = 0 lim k 2(t) = 0

t 00 1 --- 2
(11) t-t f((1)

< > f n(kl1k (t) 5 0 if k2 +

Solving (10) we obtain

k1 (t) = kI(O)e-(n+/)t

(12)

k2(t) = e-(n+-i)t[f e(n+i)t f (kl(O)e (nI)T)dT + k2 ()]

f 1(k 1(0))
for k2 (0) > f +O we have k2(t) < 0 kl(t) < 0 and

2o andn+

lim k (t) = lim k (t) = 0.
2 t 1t -- 0 t -4 0

Now insert k (t) into k 2(t) in (12) and change variables to

obtain

17



kk 1(°) f 1(X) k 2(0)
(13) k -n 2 dx + kI -k -(

2 x,
k 1 1

hence, in the (kl,k2) plane k2  g(kl,kl(0),k 2 (0)). If we select

k2 (0) 0, we have a family k2 = g(k!,k1 (0)) which depends upon

dk2
kl(0) alone. It is clear that for k (0) = 0 kand

sup g(k, k (0)) C- f( dx
k(0) 1 2

f
Lemma 1: Let (k be arbitrary values with k K Let

Lem :Lt(1 2 thk2 <nI-s Le

k2 = g(klk1(O)) for some k1(0) Then

(1) g(klk 1(0)) is concave in k (for fixed k (O)).

(2) g(klk (0)) is concave in kl(0) (for fixed kl).

(3) There exists a unique k1 (0) and t such that

g(k1(T) kl(O)) = k2 k1( ) = kl o

Proof: (i) and (2) follow by direct differentiation of (13).

kI  kl(0) f1 (x)

Let z(klkl(0)) = J+ f (x

(14) ZCkllkl= 0 k- > 0 kI Skl(O) <

We want to prove that there exists a unique kl(0) such that

Z( 1,i k1(o)) = -k2
fl(x) fl(kl)

Note that 12 > 1 all x > kl, hence
x x

fccf x 2 x2  k

18



hence

4~~~Z 00o ~ %x d-x >flL
- 1x

7 f(K)
Since by assumption - - > k > 0, it follows

n~L 2

i (14a) z~, )> E2

By (14) and (14a) it follows that there exists a unique k (O) such
LI 1

that k1 < (0) < c and

• z ~(0()) = -2

or: kL1  i°  fl1 W
gn fx dxk

1' n+ii k 2
k1

is determined trivially from 1 = k2 (O)e-(nlz).

Lemma 1 proves then that as far as the u* = 0 v* 1 policy
is concerned, by studying all k2(t) solutions with k2 (0) = 0 we

f (i l(O))
are in fact studying all k (t) with k (O) < n

2 2 n+-i

T TCorollary: There exists a unique concave (in k1 ) g (kl, k2(0)) such

that

T T T T T T
2 g (k1, 1 k(0)) and g (kl(O),k(0)) 0

f (k T)T 11 em s plcbe
Proof: Since by Theorem 1 k2  Lemma 1 is applicable.

From Theorem 1, Lemma 1 and the Corollary, it follows that for

u* = 0 v* = 1 and all k (0) < 1 the following diagram
2 n

(Diagram 3) describes the behavior of (kl(t),k2 (t)). For simplicity
TT T

of notation, we shall write gT(kl) instead of g (k! kl(O))o

19



k 2

T (

g., Th (k, g vT 1k PTl(y

kk
(15 2 0 f1(

1 f (k 1 -+

Here agin we an sole (15) agransm itt3h k,) paet

obtain aThe fail of cuve k 1 hPk (0)

emna e hi Un policy 1pliywehv

(a)2 =-->n if k 2
1151

k, f~k (+ 20



dk f1 (k)
(b L2<0 if k < k

/dk 1 1

(c) lim k 2(t) 0 lim k.(t) = kI where kI =-

(d) h(kl,k1 (0)) is convex in kI

Proof: From (15) we have

! dk 2 k 2

-k f 1 (k 1
i1k n+,m

and 2 2 f(l

dk l f (kl) ]2 >0

(n__[k - _ _______

1 n+ t

and (a) (b) and (d) follow. (c) is seen directly from (15)o

Corollary 1: For a fixed kl1(0 )  lim h(kl~k.i(O)) =

22

2 21 1'-)

h~~k 
>0) 

k

ad (a)rb) and (f)lollws endrclyfo i

211



k 
2

klt T) %

TT
T A f 1k. k

1 n+t

Diagram 4

with the arrows indicating the direction of movement.

The crucial question becomes now: What is the relation between

the curve h (k ) under the u* = v* = 1 policy and g (kl) under

the u* = 0 v* =1 policy.

A
A ~fl1(kl1

Theorem 2: Let k be the solution of k n+ Then over the

T A T T
interval k < k it is true that g (k) <h (k

Moreover k.(0 ) < k1 1,

T

Proof: Since by Lemma 1 and Lemma 2 g is concave in kI and hT

T T T TThT, )= g(1k) with
is convex in kI and since at kV(

dhT < 0 a- < 0 it follows that in order to prove the theorem
Tk 1] dklI

k 1T

22



it suffices to prove that
T

dg T ( k 1 dh (kI
Zd < 0

T Tk k

From Lemma 1 and Lermma 2 we know,, however, that

T (. )  [ f((k I
f T 1(K) k T f kT ) -- (IkT + k T

2_____ 2 11' (k+

kI fnkL n+2 1

T k T, m f~k)

By Theorem 1 k, < 0 . By the same Theorem 1

fkTkT +kT < 1 1

'i~~ k + 2 < --- +-

T A
which proves that z < 0. The result that k (0) < k is trivial.

1

Theorem 3: For any k 1 such that k <k < 1

f(kl) - (r+p)(k1 + g(k )) > 0.

Proof: Let z = f(k ) - (n+4)(k + g (kl))o We know that
kl k (0) fig(kl) kTo

gJ(1f1 x

1 1 x

Hence

__ _ f(kl) (n+ )) f 1 (x)
kl kl k(.j~~ 12x x

1 1 k1

Note., however, that ---' dx is convex in k and

T1
k < k1 (O). Hence

23



f(k ) f() T

- (r+) - (k, - 1kI  k k12

1 1 T1

- -(r+) + -2k1  1 (0
ki1

f(kl) T ()

> -(r+ll) + k (since k < (0))

A

> 0 since kI < k1

Hence z > 0o

Theorem 4: Let k2 = h(klk,(O)) be an arbitrary (v* = 1 u* policy)

function with h(k1 (0),k1(0)) < hT(k 1 (O)). Then there exists

a unique pair (k**,k**) such that h(k**,k (0)) 
= gT(k**) o

1 2 1'1

Proof: First note that h(kI(0),k1(0)) < hT(k1 (0))=h(kl k1 (0)) < hT(k1 )

for all k Now form the function

h (ki - h(k~k 1(0)) k, S k,

gT(k h(k (0)) k T <k <kT(0)

T
Clearly W(k) > 0 for k, 1  k,

W(ki  k1 (0)) = g (kI(), 1 (0)) - h(kj(0Xk 1(O))

But g T(kT(0),k (O)) = 0 and h(kT (O),k ()) > 0 since h(klki(O)) 0
1 1 1 1 11
A A T T

for k : kI only. And kI > k1 (0). Hence W(k : k (0)) < 0. Hence

there exist a k** such that W(k**) = 0, hence h(kl**,k(0))
1 1ll

UT (k,)o Note, howet, hat W(k1 ) is monotone, hence k1 is

unique,
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C.2,3 The u* = v* 0 Policy.

In this case

(16 k1 = 
-(n+)k

k 2 = ntk2

~k (o)Hence k2 = k2(F) kl is the description gf the u* = v* = 0 policy in

1(0
the (klk2) plane,

k (0):'1 2(Ok

2 k 1 0) are straight lines and obviously there is only one
1T T kT

such line that goes through the point k namely k 2  k
l)2"' nael 2= kT l

1

We have completed the preparation of all the material needed for

the proof of the optimal policy. We turn finally tc this proof.

C.2.4 Proof of the Otimal Policy.

(a) Region I

Let (kl(O)k 2(O)) be arbitrary initial conditions in region i.

If k2(O) = hT(kl(O),kl(O)) (k(O kjk) or k2(O) = gT(kl(O))

T TkI kl(O) < k (0) the optimal policy will be to follow these curves

respectively (u* = v* = I in the first, and u* = 0 v* = 1 in the

second). If (k1 (0),k 2(0)) is interior point of region 1, it has the

following features: (1) If the v* = 1 u* = 0 policy is followed

kl(t) and k2 (t) will tend to O (2) If u* = 0 vX = 0 policy is

followed k1(t) k2(t) will tend to 0. (3) If u* = 1 = v* is

followed, then there exist (by Theorem 4) a t** and k** such that

h(k-x* (0)) =g T(k**).
1' 1

Theorem 5: If (kl(O),k2 (0)) belong to region I, the optimal policy

is:
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u*(t) = v(t)* = 1 0 < t < t**

u*(t) = 0 v*(t) = 1 t** < t < T

Proof: (i) Under u*(t) = v*(t) = 1

-f brf 7-(n+ ) Ild
*2 (t) = Ae ( n + kL) t ,  (t) e= e L [C]

2(t) = -(n+ i)k 2 , 1 f1 (kl) - (n+L)k 1

Choose A > 0 and C = Ae Hence

(t) > 0 l(t) > 0 and l(t) - z(t) > 0 for 0 > t < t**

1 (t**-) - 2(t**) = 0

(2) Under u*(t) 0 v*(t) 1 t** K t < T.

t

Ae(n+)t (t) e(n+k)t [A - A f'dx]
a2 (t) = (k ) = 1

and k12 (t)1= f1(k) (n+p)k2 k1(t) =-(n+k)k (t). Hence:

*2(t) > 0 *2 (t**) 1 (t**) *2(t) * l(t) > 0 for t** < t < T.

(3) The choice of l(t) and *2 (t) for 0 < t K T is

clearly a choice of continuous functions, they are also solutions of

the differential equations (8a-8b)o

kI  kI

(4) H : l[Uvfl(k) - (n+t)k 1] + l2[(l-u)vf (-) - (n+,)k 2 I

k

= ('l - x 2)[uvf (t)k(t) + 1,2(t)k2 (t)]

k
+ *2(t)vfl(-)

2 1v
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Hence when 4i > 0 *2 > 0 *1 > *2

Sup H = (V1 -,2)[f1 (k1 )]-(n+I)[ 1 (t)kl(t)+* 2 (t)k2 (t)]+* 2 (t)f1 (k1 )
UV

Hence
~~~U = 1 V

when *2 > 0 but i2 (t) > * (t)

Sup H = -(n+p)[* (t)k (t) + *2 (t)k 2(t)] + 2 (t)f (k )
u, v

Hence

u* = 0 v*

This establishes the (I) part of the consistency conditions of the

Pontriagin Theorem. We have to prove now that sup H > 0 for all
Vu

0 < t < T.

(5) Over the interval 0 < t < t**,

f * ejT -f t [ f ( n+ ) ]d-c

(17) H=Aef 0 f e 0 [f (k)(n-k)kl]+Ae(n+v)t[(n+ )k (t)].

From (15) we have

(18) k2 (t) k2 (O)C(n+L)t

hence,

(18a) k2 (O) = k** e(n
+ ) :**

dk
I1

Also, since = f1 (kl) -I (n+)k

dkI
(19) dt f kl
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Now,

- Ae ~ l 1 . (n+i)k k2(a) e -

H = Ae (nfp)t 1 (kl) -(nij'kl ]t [f~n~]~ - A(n+kL)k 2 (0)

Note now tIQhat by (19) (change Of' variables),

***

(20) 1 1 - dx=log(fl(x).-(n±~il$ k ~7x)-n+ktx1
k 1

Now, using (18a) to substitute for k 2(0), and (20), we obtain

fL (k**)-n(n-[t.)k**
H=Ae [+tf (k1 )-(n+kL)k A i 1 1 -

1 1 1 f1(k1( n-T k12

0111

H=Ae (n pt* [f (k**) - 1nk~k* - 2n[~k*

Ntng, 2oeetat * (k**), and using Theorem 3, we conclude
2 -1

that H > 0 and a constant.

(6) Over the interval t** < t < T

H=e(n+I1)t [A - A!1- f'dx(-(n+pL)k) + Ae (n+ t )t [-( nj)

1 1 1 1 2

= Ae (nfi )t (kI- +t( + k 1 + Ae (n + p~t rt l

Since k 2 = g T(k1 ),, Theorem 3 is again applicable and H > 0.
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To check that H is a constant let

H Z(t) 1 (k (n+p)(k 1 + k2) + (n+-)k4 f*dx

Ae (n±k)t 2) z1)= *

Since kI  -(n+[t)k1 k = f (k ) - (n+[i)k 2

z(t) = -(n+)[fl(kl) - (n+[i)(k 1 + k2 ) + (n+It)k1  fldx]

hence

z(t) = z(T)e- (+i tT

hence

H = Ae (n+li)t z(T)e
- (n+ i)(t-T)

hence

H = Az(T)e(n+P)T

a constant where
z(T) = fl(k T (n+ L)(k T + kT) + (n+,)k T fT d"

1() f1 1 21 fit. 1

Region II

Region II is characterized by the following conditions:

k T

(a) k2(ON >2k()
kI

(b) k2(O) > hT(k1 (O))

Theorem 6: If (k1 (O),k 2 (O)) belong to region II, the optimal policy

is u* = 1 and v* is to be determined by the initial

conditions, There exists a unique constant v* such that
T )  T

k (T) = kT k (T) = k T
1 1 2 2*

29



Proof: Choose (t) = 0 r (t) = Ae(n+ )t A < 0.

H = Ae (n+L)t [(i-u)v fl(-+) - (n+ i)k ]

and

Sup H = -(n+.)Ae (n+ t)t k 2(t) with u* = 1
UV

Under u* 1

k2 (t) -(n+l)k 2

hence

k 2(t) k k2(0)e- (n+kL)t

hence

Sup H = -A(n+[)e+(n
+ L)t k2 (O)e-(n+ )t

U, V

S-A(n+k)k 2(0 ) > 0 since A < 0

Since k T there exists a T* such that kT k
2 k2-te e s 2 2

All the conditions required by the maximum principle are satisfied

except that we have to show the existence of a v*. To do this, notice

that
k

k, = fl(-!) - (n+p)k1

has a solution k= m(tk 1 (O),v) where v is a constant and m is

continuous. By the definition of region II, however:

If v = 0 then k2(T)= k2

but k (T) < k

If v = 1 then k2(T) = kT

T

but k (T) > k•
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T

(If k2 (0) -2 k (0) then v* = 0 is optimal, if k2 (0) = h T(k (0)){ kl

-then v* = 1 is optimal.) Since m(t,k1 (0),v) is continuous, there

must exist a 0 < v* < 1 such that kl(T) = m(T,k(O),v*) k T

Region III

Region III is characterized by the following conditions:

k T
(a) k (° ) < 2k()

(b) k (0) > gT(k (0))
2 - 1

Theorem 7: If (kl(0),k2(0)) belong to region III, the optimal policy

is u* = 0 and v* is to be determined by the initial

conditions. There exist a unique constant v* such that

T ( T
k1(T)=1 k 2'

The proof is omitted because of its similarity to the proof of

Theorem 6. We may only note that in this case 42 = 0 (A = 0)

I = Be(n+ki)t B < 0 witb the resulting u*(t) 0.

(C.3) An Evaluation of the Results

In order to evaluate our results, let us consider again the

entire (kl(0),k2(0)) plane and interpret the nature of the initial

conditions using the following diagram (see Diagram 5):
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k 
2

(kgTk 2)

Regions A and B have a clear cut interpretation Countries

in region A are "trulyt underdeveloped in the sense that they have

both kI  and k2 below the von Neumann target° Countries in region

B are truly "overdeveloped' in the sense that their kI  and k2  are

both above the target. Economies in any other region can be inter-

preted to be in unbalanced state: nly one of the sectors has a

k.
capital labor ratio (note: ki = ) above the target, while the

1 1

other is below the target.

It is quite clear that the criterion of minimum time is not very

meaningful for economies in region Bp This is demonstrated mathe-

matically by the indeterminancy of the v policy for this region In

other words, the truly minimum time solution for economies starting

in region B is to throw away capital and thus reduce k(e) and
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k (0) to k and k .T We did not allow this since the path has to

satisfy the differential equations (4a-4b). But surely, among all the

T Tpaths between the initial conditions and (klk 2) we want to choose

Lthe one that maximizes some utility function of consumption. In this

sense, we would like to stay in region B as long as we can!

Another feature of our solution is important. The unrestricted

minimum time solution for economies in regions A requires consumption

per capita to be zero during the transition period. This is part of

i the results obtained from the criterion of maximum speed. This result

is not as unrealistic as it may seem since we can always impose floors

on consumption or on the proportion of the labor force employed in the

consumer goods industries. This feature of low consumption per capita

has appeared in many papers (including some in which an explicit

utility function was maximized) and was resolved by imposing such

artificial floor based on some myth called "subsistence." This is

certainly meaningless.

I The discussion points out the need for some kind of social

preference function that would lead us to stay in region B (Diagram 5)

I as long as we can on the one hand, and prevent consumption from falling

7to 0 in regions type A, on the other. Floors should come as a

consequence of some general principles of choice over time rather than

I an arbitrary decision by the investigator. Unfortunately, such pre-

ference functions as the discounted sum of consumption (or consumption

Iper capita) do not prevent consumption from falling to zero during
the transition; thus, Uzawa [16] had to resort to the artificial con-

sumption floor to remedy the situation.
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The principle of maximum speed analyzed in this paper has the

great merit of exposing the basic features of optimal strategies with

respect to objective functions that regard rapid development as a

desirable result. It also demonstrates the similarity in development

strategy between economies of entirely different nature. For example,

let us consider Germany in 1945; most of the capital goods industries

were partly destroyed, while the consumer goods industries like

agriculture, were much less damaged. Since there was a general reduction

in the laborforce due to the war, Germany may have found itself in

region A . The basic features of the German recovery were to build

very rapidly the capital goods industries while keeping consumption

restricted by the agreement of the unions to maintain low wages. These

are the main characteristics of the strategy resulting from the maximum

speed principle. It seems to us quite plausible that the same principle

may have guided the Russian strategy of economic development; moreover,

it may be that the principle of maximum speed is the principle that

underlies the development strategy of many underdeveloped countries

today.

(D) A Comment

We have noted in the introduction that we regard this paper as

a continuation of Srinivasanis work [12]. In his paper, Srinivasan

worked with a two sector model where each sector was represented by

an "activity analysis" model of production. Srinivasan was unable to

obtain a general solution to the minimum time problem. Consequently,

he considered only the class of paths of the type (in our notation.)

u* = V* i 0 < t < t**

u*= 0 v* 0 <t <T
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and within this class he chose the one with minimum T (see [12],

jpages 81-87). In this way, his problem was only the determination of

t**. Moreover, Srinivasan considered initial conditions in region A

F(diagram above) only. In view of these facts, we regard our work as

a generalization of the Srinivasan solution to all feasible paths

starting from any initial conditions.
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FOOTNOTES

This last point was raised in [7] and [8].

The form of the theorem (II) follows from the fact that both (4)

and (8a-8b) have solutions. This is the result of assumptions

(la) and (ib). Instead of proving this fact, we shall later on

simply obtain the explicit solutions and use them in the analysis.

From (8a-8b) it is clear that *l = *2 0 over an interval

t 0 t < t immediately imply u*(t) v*(t) = 0 over this

interval.
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